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Abstract—In this work, for the first time, we propose a security
evaluation framework, namely Auto-OPS, that automates per-
forming the Optical Probing (OP) attack in simulation on a full
GDS-II design file. Auto-OPS empowers designers by automati-
cally extracting the active regions geometry model of each logic
cell in the standard cell library or custom-designed logic cells to
evaluate the security robustness of a design. Auto-OPS enables
scaling up of the current OP evaluation environments which
rely on manual extraction of active regions which is an error-
prone and cumbersome procedure. Additionally, we evaluated
and demonstrated the performance of our framework on several
benchmark circuits GDS-II files designed using an open-source
45 nm standard cell library.

I. INTRODUCTION

HIPS have been shown in the literature to be vulnerable

to various types of Side-Channel Attacks (SCA) that can
lead to leakage of chips’ sensitive information, such as Spectre
[1], Meltdown [2], etc. The mentioned SCA resulted in the
leaking of sensitive information from the chips. These attacks
could have been mitigated in the design phase. Hence, there
is a need for security evaluation frameworks to evaluate the
robustness of circuits against such attacks pre-silicon to reduce
the final cost of secure-end products.
Recently, a powerful non-invasive laser-based SCA called
Optical Probing (OP) attack was proposed to extract sensitive
information from chips [3], [4]. OP attack utilizes a Near-
InfraRed (NIR) laser light to extract the information through
the backside of chips. Various mitigation techniques have been
proposed in the literature to robustify a design against OP
attack in the design phase [5], [6]. These proposed mitigation
techniques against OP attack are at the layout level [S], [6],
[7] and the state-of-the-art OP evaluation environments [8]],
[O] only consider a handful of logic cells for performing
OP and security evaluation of circuits in simulation. This is
due to the fact that the existing OP evaluation environments
rely on a manual geometry modeling of the active regions of
each logic cell to perform OP in simulation [8], [9]. As a
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result, whenever designers are required to perform OP in the
simulation, they must create a geometry-based model of each
logic cell for all possible input combinations. This process can
be time-consuming, especially when the layout of a logic cell
is modified in the design phase in several design iterations, the
designers are required to migrate to a new technology with a
new standard logic cell library, or a custom logic cell design
is used to design a circuit.

To bridge this gap, we propose an approach to automatically
extract the active regions of logic cells from a design’s layout
file. Auto-OPS is the first framework that allows designers
and engineers to extract the active regions of the layout
automatically. Consequently, designers have the freedom to
choose from any logic cells, or even use custom logic cells to
design a layout, and yet be able to automatically evaluate the
robustness of their design against OP attack in simulation in
a few seconds. Auto-OPS provides a cost and time-effective
approach to evaluate the OP robustness of designed chips
during design time.

II. AUTO-OPS FRAMEWORK

In this section, we describe the Auto-OPS framework and
outline our approach, which automates the process of perform-
ing OP in simulation on a large design’s GDS-II file. The
complete flow of the Auto-OPS framework can be partitioned
into six stages and is shown in Fig. [I] Fig. [I] utilizes an
INVERTER logic cell to explain the flow of Auto-OPS. We
will refer to Fig. [T] in subsequent subsections to explain each
stage of Auto-OPS in detail using the used INVERTER logic
cell example.

A. Design Entry

After parsing the GDS-II file, Auto-OPS identifies the
distinct logic cells used in the design and extracts their
relevant geometries. To this end, Auto-OPS filters relevant
layers such as metal, vias, diffusion, poly-silicon, pin, and
N-well. Additionally, with the aid of the liberty timing file
(*.1ib) which contains information about the functionality of
each logic cell, Auto-OPS determines each cell’s functionality,
which will be used to extract the active regions of each logic
cell’s layout based on the applied input value to the logic cell.
For example, in the INVERTER cell shown in Stage #1 of the
Fig. |1} only diffusion, poly-silicon, metal, and pin layers (A:
input, ZN: output, Vdd: power, Vss: ground) are extracted.
These layers help define the cell’s active regions. Stage #1
has a complexity of O(n) as it parses the logic cells once.

B. Model Initialization

For each logic cell, each layout’s geometric region is
converted to a node representation that is defined similarly
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Fig. 1: Flow of Auto-OPS

to the connection at the transistor-level schematic as shown
in Stage #2 of Fig. The coordinates, layers, and links to
other nodes define the necessary information of the extracted
geometry model to later compute the active regions from the
logic cell’s layout. For example, if the information between
the via and metal layers overlap, the algorithm creates a
connection between those two nodes as a link.

After processing all shapes and geometries, Auto-OPS per-
forms three steps across the generated nodes to reconstruct the
circuit structure from the layout. The first step is to locate and
initialize the diffusion layers and define them as nodes. The
second step consists of locating the overlapping coordinates
between the poly-silicon and diffusion layers and defining
them as poly-silicon nodes. The final step is to create edges
between diffusion, poly-silicon, and generated pin nodes that
are each connected as in the transistor-level schematic of the
layout. Automating this step prevents errors that were previ-
ously introduced by manually determining active regions [8].
The complexity of Stage #2 is O(n). This is due to the one-
time identification of all required layers, such as the diffusion
layer, via layer, and poly-silicon layer, from each logic cell’s
layout.

For example, in the Fig. [l the Stage #2 of the Auto-OPS’s
flow shows the extraction of each processed node of an
INVERTER logic cell’s layout. All these nodes that are
defined as either diffusion or poly-silicon types in Auto-OPS
are represented by the color green and red in the Stage #2
of the Fig. [l respectively. Green (poly-silicon layer) and
red (diffusion layer) colored nodes indicate transistor regions
(Source, Gate, and Drain terminal) [[10] that can contribute
to the reflection of light under OP based on the present
voltage at these terminals. After the Stage #2 of the flow, we
reconstruct circuit information from the layout using a graph
representation and then all nodes are ready to propagate the
applied input voltage to various regions of the logic cell’s
layout in the next step.

C. Propagation

Determining the propagation of the voltages based on the
applied input pattern through the processed nodes which is
shown in Fig. [T] is elaborated in Algorithm [T} The algorithm
focuses on the propagation of the voltages through all the
nodes within a logic cell that can contribute to light reflection,
namely diffusion and poly-silicon types nodes. Algorithm
utilizes the internal state and graph structure, as shown in the

Algorithm 1: Node State Mapper Algorithm

Input : List of relevant diffusion type nodes
Output: Stateful representation of nodes for extraction
1 forall node in list, ,q4cs do
if node has a propagated voltage then
‘ node.voltage < propagated.voltage
else
| node.voltage < neighbor Algorithm(node)
end

end
Function neighborAlgorithm(node)
if le ftpoty-silicon propagates then

‘ node.voltage < leftgy; f fusion-voltage
else if right,oy.silicon Propagates then
node.voltage < 1ightgif fusion-voltage

I I A L

—-= e
R o= =

else
| node.voltage = None
end
16 return node.voltage
17 end Function

e
s W

Stage #2 of Fig. |l|to propagate the input voltages. For the IN-
VERTER logic cell shown in Fig. [I] there are various possible
connections between nodes that could contribute to the voltage
propagation across the logic cell’s nodes representation based
on the applied input values. When an edge connects two nodes
and one of them has a known voltage, such as Vss, Vdd, or
inputs, the voltage is propagated to the other connected node.

The propagation behavior changes based on the voltage
present at a node of poly-silicon type. This is based on MOS-
FET’s operating principle, where it conducts depending on the
voltage present at the gate terminal. The poly-silicon node is
the MOSFET’s gate terminal in the node-based representation
of Auto-OPS flow. The poly-silicon node conducts the voltage
only when the applied input voltage to the gate terminal results
in |Vyate — Vibody| > 0 with respect to the MOSFET’s body
voltage. Otherwise, it does not conduct the voltage from the
neighboring node. The neighborAlgorithm function in Algo-
rithm [T} is assigning the neighboring diffusion node voltage to
the current diffusion node when the respective poly-silicon is
conducting. Moreover, if a diffusion node is trapped between
two non-conducting polysilicon nodes due to the applied input
combination, the diffusion node will not contribute to the light
reflection. After the execution of Algorithm [I] all nodes that
contribute to the light reflection based on the applied input
combination are determined and prepared for the next stage
of Auto-OPS’s flow. The complexity of Stage #3 is O(m x n)
where, m, and n are initial zones that can be active, and the
number of connected elements to the possible active node,
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Fig. 2: Active regions extraction of a standard CMOS XOR2 logic cell (a) Input A is logic 0 and input B is logic 0, (b) Input
A is logic 1 and input B is logic 0, (c) Input A is logic 0 and input B is logic 1, (d) Input A is logic 1 and input B is logic 1.

respectively.
D. Extraction

With the known voltage state of each node, the extraction
of active regions is performed. It is important to consider
that NMOS and PMOS transistors behave differently for the
extraction of the active region. According to [5], PMOS and
NMOS transistors reflect light under OP when the voltage
present at the diffusion or poly-silicon nodes are set to O
and 1, respectively. Moreover, according to [5], the reflection
amplification of NMOS, and PMOS transistors are different
(Kpymos = 1.3Knamos). Consider the INVERTER logic
cell’s active regions, as shown in the Stage #4 of the Fig.
When the applied input is set to logic 0, active regions of the
PMOS and NMOS are only the diffusion region overlapped by
poly-silicon and the diffusion region connected to the output
signal, respectively. On the other hand, for the INVERTER
logic cell, when the applied input is set to logic 1, the active
regions of the PMOS and NMOS are only the diffusion
region connected to the output signal, and the diffusion region
overlapped by poly-silicon, respectively. This is due to having
|AV| > 0 for these regions with respect to their body voltage
based on the applied input.

To describe Auto-OPS’s flow up until the Stage #4 using
a more complex logic cell, we showcase active regions ex-
traction on a XOR?2 logic cell, as shown in the Fig. 2] We
demonstrate the extraction of the active region on all possible
input combinations of the XOR2 logic cell. As shown in
Fig. |2l the hachured zones overlay on the XOR2 logic cell’s
layout represent the active regions of an XOR?2 logic cell. The
approach discussed through the Stages #1-4 in the flow of
Auto-OPS in the Fig. [T]is applied to all the distinct logic cells
present in the GDS-II file of a large design. The complexity
of Stage #4 for each logic cell is given as O(28+% x n x m),
where k is the maximum number of inputs for the logic cell, ¢
is the maximum number of outputs, n is the maximum number
of possibly active regions, and m is the maximum number of
elements connected to that zone. It must be noted, that we do
perform active region extraction on standard logic cells, and
they have a limited number of maximum input pins. Hence,
the upper bound for the complexity of active region extraction
is limited to the logic cell’s number of input pins.

E. Composition

A GDS-II file of a large design is composed of multiple
logic cells from the cell library. In the first 4 stages of the

Auto-OPS’s flow, we extracted the active regions of each
distinct logic cell in the large design. Auto-OPS extracts the
die area definition and information on logic cell placement and
orientation from the GDS-II file. As the next stage, based on
the applied input to the design, Auto-OPS places the active
regions geometry model of each logic cell which is computed
in the previous stages according to the coordinates defined in
the design file, as shown in the stage #5 in the Fig. [T] In this
stage, by composing the information from the GDS-II design
file with the extracted logic cells’ active regions geometry
model, Auto-OPS creates a new representation of the GDS-II
file. As a result, the composition stage of Auto-OPS computes
an OP simulation-compatible representation of the GDS-II file.
The complexity of Stage #5 of our framework is O(n), as it
runs through all the used cells in the design once.

E OP Simulation

The final stage in the Auto-OPS flow is to perform OP
simulation on the entire design. This is done by placing
the center of the laser on any location of the OP compo-
sition representation of the GDS-II file to perform Electro-
Optical Probing (EOP), and Electro-Optical Frequency Map-
ping (EOFM) analysis according to the equation described in
[8]]. Interested readers are encouraged to refer to [[11]], to learn
more about performing OP simulation on the geometry-based
representation of the GDS-II file.

III. EXPERIMENTAL RESULTS & DISCUSSION

In this section, we evaluate and discuss the performance of
the Auto-OPS in terms of scalability and the required pro-
cessing time of our framework on various benchmark circuits.
For this end, we used benchmark circuits from ISCAS’85
[12]], ICCAD Contest 2021 [13]], and EPFL benchmarks [14]].
All the benchmark circuits were passed through the Cadence
Genus synthesis tool using a 45 nm open-source standard cell
library [15]]. Next, all the synthesized benchmark circuits were
passed through Cadence Innovus for place and route using an
area density of 65 %. Finally, the placed and routed GDS-II
design files were streamed out to be used in the Auto-OPS
framework.

The performance results of the Auto-OPS on the afore-
mentioned benchmarks are shown in Table [} In Table [I, PI
represents the number of the circuit’s primary input, PO is the
number of the circuit’s primary output, DC is the number of
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TABLE I: Performance evaluation of Auto-OPS.

\ Circuits [ PL [PO[DC] TC ] DA | ET
|7 5 2 1 6 10.05 3.03
N | 432 36 7] 21 79 12087 | 520
- | c499 41 32 9 171 40038 | 3.29
g c1355 41 32 9 172 341.17 | 3.86
< | c1908 331 251 19 204 35726 | 397
S [¢2670 233 [ 140 | 23 268 45975 | 5.40
~ | ¢3540 50 221 24 465 75587 | 5.48

c7552 207 | 108 | 23 716 1223.07 | 5.35
test01 12 4 3 9 4134 | 321
test02 12 4 8 35 62.56 | 3.36
test03 571 201 10 114 305.77 | 3.31
test04 80 | 68 | 23 1540 4422.60 | 532
test05 641 341 13 339 115870 | 3.56
test06 9% | 64 | I5 1835 4169.58 3.85
~ | test07 50 321 22 605 148497 | 5.18
= | test08 108 | 64 | 25 938 1805.42 | 5.45
2 | test09 9 | 41 | 27 1486 4230.36 | 5.95
£ [ testl0 48 | 64 | 23 710 172432 | 517
O | testll 24 40 | 22 616 1291.56 4.19
A | testl2 264 | 26 | 20 3629 9406.08 | 4.29
5 test13 48 51 20 286 57767 | 4.86
O [ testl4 16 1] 13 36 4823 | 398
test15 152 ] 97| 26 1118 255448 | 547
test16 139 41 23 345 483.53 | 5.08
test17 95 [ 68 | 12 186 577.67 | 3.0
test18 20 17 9 42 7278 | 3.41
test19 96 | 285 | 25 441 809.89 | 4.39
test20 121 17 | 21 1730 3597.60 | 4.36
adder 256 | 129 2 128 148173 | 3.17
bar 135 | 128 5 917 180542 | 3.25
div 128 | 128 | 39 20670 | 52893.09 | 7.36
< | hyp 256 | 128 | 43 | 129673 | 205216.87 | 15.07
= [Tog2 32| 321 45 14019 | 3257449 | 732
2 [ max 512 | 130 | 22 1599 2450.82 | 5.69
& [ multiplier || 128 | 128 | 28 10176 | 20170.01 5.15
sin 24 [ 25 ] 36 2757 449777 | 6.62
sqrt 128 | 64 | 37 13653 18493.28 8.03
square 64 | 128 | 28 9400 16904.03 4.92

It must be noted that commercial extraction tools such as
Calibre [16] are capable of extracting transistor-level infor-
mation, i.e., spice netlist, from a GDS-II file. However, spice
simulation must be performed to identify the active regions of
a logic cell based on the applied input pattern. Spice simulation
can be time-consuming for each input pattern for a large design
and adds another step to active region identification, which
is error-prone. Hence, Auto-OPS speeds up the process of
identifying active regions of each logic cell in a large design
GDS-II file to perform OP by omitting the need for a spice
simulator. Furthermore, the applicability and limitations of the
OP simulation are discussed in depth in [11].

IV. CONCLUSION

We presented the first framework to automate OP sim-
ulations for an entire layout using an open-source 45nm
standard cell library. Auto-OPS was evaluated on several
benchmark circuits to demonstrate its scalability on large
design files. Auto-OPS automates the extraction of transistors’
active regions and prepares the GDS-II file for OP simulation
in seconds which can easily be integrated into the ASIC design
flow. This provides a cost-effective solution for evaluating
the security robustness of a design against OP during pre-
silicon. Designers can use any logic cell library or custom cells
to assess the security robustness of their designs against OP
attack with minimal effort. Future work will focus on geometry
model extraction for an extension of OP attack, namely LLSI
analysis, and improving our geometry extraction model further
using real OP experimental setup on our fabricated chip using
a commercial 28 nm node.
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